
Pandarus Documentation
Release 0.4.1

Chris Mutel

April 30, 2015

Contents

1 Referencing spatial features 3

2 Why Pandarus? 5

3 Usage 7
3.1 From Python . 7

4 Output formats 9
4.1 JSON . 9
4.2 CSV . 9
4.3 Pickle . 9

5 Technical Details 11
5.1 Computational efficiency . 11
5.2 Wrapping vector and raster data in a common interface . 11
5.3 Projection . 11

6 Installation 13
6.1 Requirements . 13
6.2 Easier installation using Canopy . 13
6.3 Running tests . 13
6.4 Technical reference . 14

i

ii

Pandarus Documentation, Release 0.4.1

Pandarus is software for taking two geospatial data sets (either raster or vector), and calculating their combined inter-
sected areas. Here is an example of two input maps, one in blue, the other in red:

Pandarus would calculate the intersected areas of each spatial unit of both maps, and output the following:

{(0, 0): 0.25,
(0, 1): 0.25,
(0, 3): 0.25,
(0, 4): 0.25,
(1, 1): 0.25,
(1, 2): 0.25,
(1, 4): 0.25,
(1, 5): 0.25,
(2, 3): 0.25,
(2, 4): 0.25,
(2, 6): 0.25,
(2, 7): 0.25,

Contents 1

Pandarus Documentation, Release 0.4.1

(3, 4): 0.25,
(3, 5): 0.25,
(3, 7): 0.25,
(3, 8): 0.25}

The intersected areas are given in square meters. Because Pandarus was designed for global data sets, the Mollweide
projection is used as the default projection for calculating areas. Although no projection is perfect, the Mollweide has
been found to be a reasonable compromise (e.g. 1)

Warning: Pandarus is still in development, and given how people misuse and even abuse geospatial data, it will
certainly fail for some maps and use cases. Please feel free to file bug reports if things don’t work as you expect.

1 Usery, E.L., and Seong, J.C., (2000) A comparison of equal-area map projections for regional and global raster data

2 Contents

http://en.wikipedia.org/wiki/Mollweide_projection
http://en.wikipedia.org/wiki/Mollweide_projection
https://bitbucket.org/cmutel/pandarus/issues/new
http://cegis.usgs.gov/projection/pdf/nmdrs.usery.prn.pdf

CHAPTER 1

Referencing spatial features

There is no standard way to reference vector features or raster cells. Internally, Pandarus iterates over vector features
in the file order, and assigns each an integer id starting from zero. For rasters, a similar procedure is followed, again
with an incrementing integer id, iterating over cells starting from the bottom left of the raster, and iterating over rows
and then columns.

For vector data sets, the label of a data column which uniquely identifies each feature can be given, and Pandarus will
translate the integer id to that data column value. Raster data sets will have their integer ids automatically translated
to the label "Cell(x, y), where x and y are the longitude and latitude of the raster cell centroid.

3

Pandarus Documentation, Release 0.4.1

4 Chapter 1. Referencing spatial features

CHAPTER 2

Why Pandarus?

The software matches two different maps against each other, and Pandarus was a bit of a matchmaker himself. Plus,
ancient names are 200% more science-y.

5

http://en.wikipedia.org/wiki/Pandarus

Pandarus Documentation, Release 0.4.1

6 Chapter 2. Why Pandarus?

CHAPTER 3

Usage

Pandarus installs a command line programs, pandarus. It is called in the command shell or terminal:

pandarus <map1> [--field1=<field1>] <map2> [--field2=<field2>] <output> [csv|json|pickle]

After the program name, you need to give the locations of the two spatial data sets, as well as the name of the file to
create for the output:

• <map1> is the filepath of the first raster or vector spatial data set

• <map2> is the filepath of the second raster or vector spatial data set

• <output> is the filepath of the outputted file

• <field1> and <field2>, if specified, are the names of the columns used to uniquely identify each feature
in <map1> and/or <map2>. For rasters, this value is ignored.

• csv or json or pickle, if specified, is the output format. json is the default value.

For example, if I was matching the raster /Users/cmutel/test.raster against the shapefile
/Users/cmutel/test.shp, which had a unique data column name, and wanted to create the file
/Users/cmutel/foo.bar, using the csv format, I would enter:

pandarus /Users/cmutel/test.raster /Users/cmutel/test.shp --field2=name /Users/cmutel/foo.bar csv

3.1 From Python

Pandarus can also be used as a Python library. See the Controller technical documentation.

7

Pandarus Documentation, Release 0.4.1

8 Chapter 3. Usage

CHAPTER 4

Output formats

The basic output is, for each intersecting spatial unit in the first and second map, a unique ID for each spatial unit and
the intersected area, e.g. (’Switzerland’, ’Rhine watershed’, 42). The are three ways of reformatting
the data when written to a file.

4.1 JSON

JSON is a data format originally developed for Javascript but now used widely in many programming languages. This
is the recommended and default output format for Pandarus. The JSON output format is:

[
[map1 id, map2 id, intersected area],

]

4.2 CSV

Pandarus can also export to CSV files. It includes a copy of unicodecsv, so that map ids aren’t limited to the ASCII
character set. CSV files are UTF-8 encoded, and have the following format:

map1 id, map2 id, intersected area

4.3 Pickle

Pandarus results can also be serialized into Python pickles with the following format:

[
(map1 id, map2 id): intersected area

]

9

http://en.wikipedia.org/wiki/JSON
https://pypi.python.org/pypi/unicodecsv/
http://docs.python.org/2/library/pickle.html

Pandarus Documentation, Release 0.4.1

10 Chapter 4. Output formats

CHAPTER 5

Technical Details

5.1 Computational efficiency

Pandarus is relatively computationally efficient. It uses R tree indices to screen out geometries where no intersections
are possible, and uses Python multiprocessing to split work across all available CPUs. Given its use case in regionalized
LCA, further optimizations didn’t seem worthwhile.

5.2 Wrapping vector and raster data in a common interface

The Map object provides a common API for both vector and raster data sources. Vector data is loaded using Fiona, and
raster data is loaded using the much less pleasant GDAL library. See the Map and Raster technical documentation.

Note: The common API is not perfect. For example, GDAL raster geometries are given as WKT strings, but Fiona
vector geometries are given as GeoJSON dictionaries (see pandarus.maps.to_shape).

5.3 Projection

Projection between coordinate reference systems is done using a wrapper adapted from code by Sean Gillies based on
pyproj. See the Projection function.

11

http://en.wikipedia.org/wiki/R-tree
http://docs.python.org/2/library/multiprocessing.html
http://toblerity.org/fiona/index.html
http://www.gdal.org/
http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/GeoJSON
https://code.google.com/p/pyproj/

Pandarus Documentation, Release 0.4.1

12 Chapter 5. Technical Details

CHAPTER 6

Installation

Pandarus can be installed directly from PyPi using pip or easy_install, e.g.

pip install pandarus

Pandarus source code is on bitbucket.

6.1 Requirements

• docopt

• fiona

• GDAL

• progressbar

• pyproj

• Rtree

• shapely

6.2 Easier installation using Canopy

Enthought Canopy is an easy way to install the geospatial dependencies, which can be a pain, especially on Windows.

Note that Rtree will still have to be manually installed, even when using Canopy. See the rtree docs.

6.3 Running tests

Warning: The current level of testing is, shall we say, inadequate. You have been warned.

To run the tests, install nose, and run nosetests.

13

https://pypi.python.org/pypi
https://bitbucket.org/cmutel/pandarus
http://docopt.org/
http://toblerity.org/fiona/index.html
https://pypi.python.org/pypi/GDAL/
https://pypi.python.org/pypi/progressbar/2.2
https://code.google.com/p/pyproj/
http://toblerity.org/rtree/
https://pypi.python.org/pypi/Shapely
https://www.enthought.com/products/canopy/
http://toblerity.org/rtree/install.html
https://nose.readthedocs.org/en/latest/

Pandarus Documentation, Release 0.4.1

6.4 Technical reference

6.4.1 Map

6.4.2 Raster

6.4.3 Projection

6.4.4 Controller

14 Chapter 6. Installation

	Referencing spatial features
	Why Pandarus?
	Usage
	From Python

	Output formats
	JSON
	CSV
	Pickle

	Technical Details
	Computational efficiency
	Wrapping vector and raster data in a common interface
	Projection

	Installation
	Requirements
	Easier installation using Canopy
	Running tests
	Technical reference

